Apropos: Mathematical Modelling of Inner Ear and DP-OAE Generation
Written 1998 and translated into English by 

Michael F. Berg as an appendix to the MD thesis of Margarete Maennlein-Mangold, Erlangen
“I don’t know, why you try to calculate DP-OAE at all without an active process in the inner ear!”   Sebastian Hoth, Heidelberg

“You have clearly to distinguish between ‘non-linear’ and ‘active’. What I believe is that the inner ear ist ‘non-linear’ but not ‘active’. People were wrong believing in a sort of negative friction.”
Jont B. Allen, Boston

“Was man sieht, ist da.”
(“What you see does exist.”)
Maria Kratz, Bamberg

This ‘apropos’ has been written to infect the one or the other with the mathematical model virus. If you are afraid read on nevertheless!

Macro mechanics of the inner ear, that means motion of stapes, of lymph in the scalae, motion of the organ of Corti up to the adequate stimulation of the hair cells. It is a purely physical, namely a (hydro-)mechanical problem.

The science of physics consists in an historically growing play alternating between observations and experiments on one side and theoretical, often mathematical “models” on the other. A physicist says he “understands” a phenomen when he is able to predict or recalculate it in priciple on the basis of few  “laws” from a “model”.

There is still some more way to go till the phenomena- in our case the OAEs- are understood by those who daily use them with clinical subjects and healthy or reconvalescent test persons. I mean a user of OAE registration “understands” the method when he has developed a feeling or knowledge of when, why and which deviations are to be expected in the registrations if there are certain deviations in the hearing organ of a subject. It would be wonderful if he could vice versa conclude a certain damage in the ear from his OAE registrations. The aim of the MD thesis of Frau Margarete Maennlein-Mangold *) was to fill the gap between the “principal theoretical understanding” of physicists and the “practical understanding” of audiologogists.

Some questions still open are for example:
· Where exactly are DP-OAEs generated?

· How do they come to the registration probe in the outer ear canal?

· What mean ‘active inner ear process’ and ‘non-linear effect’?

· Do middle ear and ear canal have no influence on the test results?
For long time now it has been tried again and again to recalculate and so to “understand” the function of the inner ear by mathematical models - as far as simple mechanics are concerned. We won’t discuss historical priorities here, 
· but we shall try to find an illustrative representation of the macro mechanical behaviour of the inner ear by suitable simplifications.

· Later we shall discuss which step by step expansions and modifications are necessary and possible to have a inner ear model- be it ‘activ’ or only ‘non-linear’-produce distorsion products, again with the aim of calculation and illustration.
· Then we shall deliberate what influence we have to expect from properties of the middle ear and from the typically probe-closed ear canal.

Eventually we shall come to a special view point:

· Where does the ‘compressive non-linearity’ of the experimentally DP-OAE come from and what can it mean if it is not there?

We approach the problem of mathematical modelling of the inner ear step by step. We cannot avoid mathematical notation completely, but we shall not- “more electrico”- illustrate the oscillating and resonating parts of ear canal, middle and inner ear by larger numbers of inductivities, condensors, resitors, buffer amplifiers or even gyrators. (Nice for electrical engineers, not for the rest of the world seeking understanding before having studied electrics!)
Step 1 A quite simple oscillation:

Hastily we repeat a bit of theoretical physics: In mechanics we have to do with motions and reshaping of bodies and with the forces behind them. Motion means coordinates or elongations are continously changing, possibly due to forces. The mathematical description for this is done by “equations of motion”. The most famous and most simple one has been formulated by Isaac Newton and nearly everybody has learned it by heart some time: Force equals mass times accelleration or put as a formula:
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It is also designed as “law of inertia”; because “when the force is zero a body keeps its velocity, is inert”. The latter both as for the absolute value and for the direction of the velocity. The dots above s in the formula stem from Isaac Newton. A dot is an “operator” meaning derivative with respect to time: If 
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 is distance, 
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 means accelleration. Leibnitz has invented the alternative notation 
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  for the same operator.)
The standard problem of mechanics is nearly solved, when you can give a suitable equation of motion for the mechanical system of interest. In advance you have to simplify the mechanical system to its most important components, and especially you have to deliberate which coordinates you will use to describe it. Let us have an example:

Imagine a simple pendulum, a polystyren ball of mass m hanging on a fishing line of length L: Mother Earth with its gravitation attracts it to its rest position (Leibnitz’s law of gravitation), air is providing some friction and brakes the motion (Aristoteles: Every motion tends to stop), while the ball itself wants only to keep its velocity, to be inert (Newton). If we use s for the elongation from the rest position (6 o’clock) the equation of motion becomes:
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The forces on the RHS are air friction proportional with a certain factor r to velocity and weight, but only its vector component vertical to the string and not compensated for by the string tension. Every motion 
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which together with its first and second time derivative 
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fulfills this equation is a possible motion of the system, Mathematically spoken the equation is a non-linear (because of the sinus) differential equation (DE) of second order with constant coefficients. A simple but trivial solution is 
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 and therefore the acceleration is directed against the elongation s we shall get a oscillative motion. While you can simply build and put to motion this pendulum you will not be able to give a general mathematical solution 
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: because of the non-linarity in form of the sinus function.- Try for instance 
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: You will be stopped by an expression like 
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on the RHS, which is really ugly to deal with.

( Of course you can use your PC, set certain start values and for example using the algorithm of Runge-Kutta can calculate the motion ‘numerically’. But to learn the nature of the motion, you will have to experiment with the start conditions.)
“But around s=0 the sinus is nearly linear...”. OK than, from a collection of formulae (Abramowitz and Stegun f.i.) you can find an expansion of the sinus function into a power series of s/L:
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The trick is to sacrifice exactness, to confine your interest to motions where s/L is rather small, say ½.:
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If now you approximate sin ½ by ½, or sin s/L by s/L the error you make is smaller than 4%.

The angle of elongation is about 30° and we start with a a 5 to 7 o’clock oscillation.

The approximation makes the problem easily solvable. Keeping the ‘nature’ of the motion.
The DE now is linear, of second order and with constant coefficents and homogenous (RHS=0):
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By old tradition we have moved everything containing s to the left and have divided the whole equation of motion by m. From two months of studies in physics on you are very happy if you can describe a problem in this form: The solution is well known as a ‘damped harmonic oscillation’. From daily experience you now, what comes: After some initial kick the pendulum oscillates in a nearly exactly periodical way; only nearly periodical as the air friction absorbs a bit of kinetic energy to warm up the air at each zero crossing with the consequence that the amplitude of each oscillation becomes a bit smaller. A pendulum that gets a little kick at each zero crossing- with the correct direction of course- could move on eternally, possibly even spend energy to an other system: This would be called an ‘active process’ or ‘negative friction’. Normally one would put down such an activity on the the right hand, the credit side of the equation: There traditionally you find the ‘sources’. By the way, if m is large, then r/m is small, and we find that the ‘Eigenfrequency’ of the pendulum is independend of m:
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What beside the ‘normal stuff’ we can learn from the pendulum example is:

‘Linear’ in mathematics means ‘a general solution can be obtained in an easier way’ and that one only too gladly has the hope that the linearization of the problem does not remove the nature of the motion.
‘Active process’ means there is sombody aside or on the swing that adds some energy in the right moment.
‘Linear system’ and ‘active process’ do actually have nothing to do with each other. Nevertheless they are mixed up again and again especially in discussions of oto-acoustic emissions (OAE) and the inner ear. 

Now lets go on!
Step 2: A Wave on a Rope:
We think of a very long rope spanned horizontally by a certain force F and ask for its equation of motion. From stringed music instruments we know that such a system could make oscillations or vibrations.

Along the rope we measure the distance x, a tranversal elongation of the rope at the place x and at the time t we designate by Y(x,t). If you transversally pull the rope at a certain place 
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 the rope ‘wants’ to return to its rest position. This comes from the bending under your finger: The tensioning force along the rope has different directions right and left of your finger. The two forces left and right do not completely compensate and a tranvessal force is generated trying to rectify the bending. If the rope carries the inert mass m per unit of length we can give the equation of motion:
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Here 
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 means second derivative of Y with regard to time, or tranversial acceleration, whereas 
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 is the second derivative of Y with regard to place and means ‘upward bending’. This equation of motion, also called a ‘wave equation’, is a linear, partial DE with constant coefficients. The equation says: upward acceleration will occur where you have upward bending, downward acceleration where you have downward bending, so the rope tends to pull all bendings flat. A sharper bending will make a stronger acceleration. And the effect is directly proportional to the tension F and indirectly proportional to the mass load of the rope per unit length. Physicists like again to divide the whole equation by m and replace F/m by C²:
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They use to ‘read immediately’ from this, that any function 
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 will give a possible motion. (Try it out yourself, it is true!)
The first form 
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 describes an arbitrarily formed wave packed running to the right, to larger x values, with speed C, the second form 
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 is running left.

(At the end of the rope these wave packeds are reflected, depending on the type of fastening of the rope. Because we don’t need this complication, we asked for a ‘very long’ rope and we will stop the observation in time...)

There is a different kind to find solutions of our wave equation: We try out solutions of a quite special form, namely such which can be written as a product in following manner:
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Here 
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 is short for the complex exponential function 
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as the electric engineers use to write. The angular velocity ω contains the time period T or the frequency f in the form of 
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The time and frequency, but not place dependent function
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 has the nice and practical properties 
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 EMBED Equation.3  [image: image34.wmf] and
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i.e. derivation with respect to time gives only an factor in form of a complex number. Mathematically they are “Eigenfunctions” of the time derivative operator.
A certain Jean Baptiste Joseph Fourier before long time- when calculating how sun warms up the soil in spring and summer, but also daily- has shown, that any ‘reasonable’ function 
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 can be added up (Fourier synthesized as we say today) from- possibly very many- such pure frequency components; of course also the above mentioned running wave packets.
We insert the ‘factorized’ form ** into our wave equation and setting 
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This DE is no longer partial, but ordinary. And it is linear, homogenous, with constant coefficients. We are happy: It resembles very much the equation of the pendulum in step 1 when we set friction to zero and change time t with place x.

A general solution is:
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This is what we normally think of when we talk about waves, standig or running waves. The ‘wave number’ K contains the wave length λ in the form 
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 .and the direction of the motion.
The special thing about a rope or string wave is: Wave velocity C is independent of the wave length λ. There is no ‘dispersion’. All running waves of all frequencies, all wave packets, independently on there frequency content, run with the same speed C to the right or to the left.
Nota bene: Because an air column in a tube has a quite similar equation of motion the same is true for sound waves. It would be very complicated to understand for instance the word ‘attention!’ when depending on distance the several frequency components would arrive at different times at your ear.
Our next step will give up this simple property.

Step 3: A simplified lymph wave in a pair of scalae:

Instead of a rope we now need a slightly more complicated thing:

We think of two ‘very long’ brass tubes of say 2 cm diameter, the wall having say 2mm across. Using a file we flatten the tubes on one side till we have a slit there of a  constant width of say 5 mm. The cross section of the tubes no longer is an O but a C. Both the C profiles we lay on each other with their open sides after having inserted a thin strip of latex, the latter nicely and equally tensioned transversially to the slit, and nicely and equally de-tensioned along the slit. Then we glue or bind everything together. The slit, closed by the latex tape in between, is only an inner affair of the whole thing. The cross section now resembles something between cipher 8 and the greek letter 
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.
We aim actually to a certain similarity with the scala vestibuli/scala tympani pair of the inner ear. (But it is still to simple!) We fill the ‘scalae’ completely with water (‘lymph’) and put the whole thing under water.( So the ‘lymph’ will not flow out.) We have our simplified system, now we have to think of coordinates to describe the several motions. The ‘lymph’ can move somehow in the scalae.( We forget little eddies.) We are interested in lyph currents along the scalae (‘x-direction’) and we will designate them by U:
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 Velocity of the lymph current along x in the scala vestibuli.
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 Velocity of the lymph current along x in the scala tympani.

They both can depend on place x and time t. (Compare the rope!)

When such an U is not zero at all, can it change its value?- Yes, naturally if there is a gradient of pressure within the lymph!

So we need a designation for the pressure in the scalae: P.
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 lymph pressure within the scala vestibuli, can depend on place x and time t.
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 lymph pressure within the scala tympan, can also depend on place x and time t.

We are able too to give an equation of motion, when we think of a little 1 cm ‘slice’ of lymph marked by some ink:
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 A being the cross sectional area of the scala.
We replace mass by 
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on the LHS and set the gradient of pressure P times 1 cm instead of the difference in pressures 1 cm apart on the RHS we get:
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The mathematician would call it a ‘linear, partial DE of order 1’. The ‘physical content’ is the inertia of the lymph due to ite density. The variables U and P are functions of place x and time t, two for each of the scalae, four functions of x and t and only two equations.

What we need is more equations: Lymph as we have learned is a fluid like water, it is incompressible. If this is so, can U be different at different places? Yes, it can, if the latex mebrane moves and balances between the scalae. Think of two marks on the wall of the scalae, 1 cm apart, at x-1/2 cm and x+1/2 cm. When f.i. at x+1/2 cm there is more lymph flowing out of our marked volume than comes in at x-1/2 cm, then the membrane must balance this out by moving upwards with the membrane velocity V(x,t) within the lenght of 1 cm and the width of the slit of B=5 mm.
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Now we replace the difference of the U function values 1 cm apart by 
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 and divide by 
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 In setting A/B=H, the ‘effective’ height of the scala, we get:
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 for the scala vestibuli.

And in a similar way:
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 for the scalatympani.
Again mathematically ‘linear, partial DE of order 1’. The ‘physical content’ is the incompressibility of the lymph. If we accept that there is no underlying constant lymph current in the scalae, ( We could stop it by closing the far away ends of the scalae!) we now see that the currents 
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 must run in ‘Gegentakt’like in a ‘push-pull’ stage:
Where 
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 goes right, 
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 goes left. This saves us the half of mathematical work to do.
We do all calculations for the scala vestibuli and do have the results for the scala tympani by simply changing the sign. Therefore we drop the v subscript now, but we think of it!

Lets look on our balance of equations and functions now: For the three functions U(x,t), P(x,t) , and V(x,t) we do have only two equations: Help! Is there another equation? Yes, indeed:

Who or what is lifting the membrane, shurely having some inert mass (don’t forget the part of the lymph moved vertically) , some stiffness (due to the transversal tension!)? This can be done only by the pressure in the scalae, or more exactly by the pressure difference between the scales. (A ‘common mode’ pressure might be there, and in the real ear is there, but it does not move the membrane, you will not hear it.) Let us set up the equation of motion for a short piece (1 cm) of the membrane- we do have already some experience:
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or in shortened form:


[image: image59.wmf]);

,

(

2

))

,

(

(

t

x

P

t

x

V

Z

×

-

=

  (***)

Here Z it not a number but a differential and integral operator. It is rather harmless because it operates only on time dependence:
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What is important for us: m and D by now are constant values, independent of space x and time t. They represent effective inert mass and effective stiffness of the membrane per unit of area.

Now we do have three equations for three functions and nothing can stop us:
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                       (inertia of lymph)
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       (incompressibility of lymph)
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      (motion of the membrane)

(We have not written down the (x,t) dependence of U,V, and P, but we remember it !) Because all these DE are linear with constant coefficients there is an quite easy way to solve it: Set a running wave solution:
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U(x,t), P(x,t) and V(x,t) are complex functions, having a real and imaginary part depending on (x,t), U0,P0, and V0 are complex numbers as well. If in the end we take only the real part of the functions we will land at real functions as real solutions of our real physical brass pair of scalae. We apply the proper 
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 are ‘Eigenfunctions’ of these operators we get simple (complex) algebraic equations:

[image: image67.wmf];

2

;

;

0

0

0

0

0

0

P

V

j

D

m

j

V

U

H

K

j

P

K

j

U

j

×

-

=

×

÷

÷

ø

ö

ç

ç

è

æ

×

-

+

×

×

-

=

×

×

×

×

×

=

×

×

×

w

w

r

w


Now divide the second equation by the first to get 

[image: image68.wmf];

0

2

0

P

H

j

K

V

×

×

×

-

=

r

w


and use this to replace V0 in the third equation:


[image: image69.wmf];

2

2

-

=

÷

÷

ø

ö

ç

ç

è

æ

×

×

-

÷

÷

ø

ö

ç

ç

è

æ

×

-

+

×

×

-

r

w

w

w

H

j

K

j

D

m

j


[image: image70.wmf]
P0 has disappeared from the equation, meaning you are free to choose any value you like. The last equation can be brought to the form:
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being the physically important relation between K and 
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 , or velocity and frequency:
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We have replaced D/m by the square of the ‘Eigenfrequency’ of the membrane. the one you hear if you have a ‘little green man’ (LGM) knock on the membrane between the scalae.
The ± says: Waves in the scalae can run to the right as well as to the left. The first square root is a constant of dimension length.(Remeber m being mass per unit area) The second square root (dimension of inverse time) is THE THING telling you that velocity of the waves depends on their frequency (in relation to the ‘Eigenfrequency’ of the membrane). Low frequencies have a velocity of:
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influenced by a.o. the tranversal tension of the membrane giving the stiffness D and the density of the lymph. Higher frequencies are running slower, with much shorter wavelength, and if the frequency approaches the ‘Eigenfrequency’ of the membrane slow down to zero. There is no possibility to run waves through the scalae having higher frequency!!

In case you had a LGM jump on the membrane with such a ‘forbidden’ frequency a simple all in phase motion decaying exponentially over x would result, no running wave.
Please, repeat to read the last dozen of lines again until you spontaneously say ‘Ahaa! Nicely usable for an inner ear to separate frequencies, isn’t it?’

A not too short piece of our pair of scalae can be used as a low pass filter, and nobody hinders us to place a whole series of such pieces having lower and lower cut off frequency as a low pass filter chain: A better model for the inner ear. OK, this is why I bothered you with step 3.
You know what comes now:

Step 4: A simplified but realistic scalae model:
In our imagination we can easily transform the brass scalae into a more realistic model of the inner ear: First we add some friction to the Z operator (***):
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A real inner ear has its main friction below the tectorial membrane brushing the ciliae outward when the basilar membrane goes up. Instead of constant coefficients we now let especially D depend on place x:
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The friction coefficient will be coupled to m and D(x) by:
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Our ‘Eigenfrequency’ of the membrane 
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 now is an exponentially decreasing property of the membrane, and what we get is exactly what the real inner ear delivers: a tonotopy, a mapping of several frequencies along x.
For each given frequency 
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 there is a stopper at
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having the following properties:

· As long as a wave of frequency ω runs in from the stapes it will be stopped at its tonotopic xstop.

· If there are oscillating sources (LGMs?) within the inner ear of frequency ω we will have to distinguish two cases:
A source ‘left’ of xstop(ω) lies in the ‘allowed’ region and will produce an ingoing wave stopped at its proper xstop and at the same time an outgoing wave possibly registrated in the outer ear canal as an OAE.
A source ‘right’ of xstop(ω) lies in the ‘forbidden’ region and will not produce any running waves. It will be invisible, or better unhearable at the stapes.
Post scriptum: In order to transform our ‘very long brass scalae’ into a realistic model of the inner ear we set- following Ekbert Deboer- the following model parameters:

· Diameter of the scalae set to 


0.05cm

· Width of the ‘basilar membrane’

0.05cm

· Lenght of the scales



3.60cm

· Mass per cm²




0.1 g/cm²

· Highest ‘Eigenfrequency’ at x=0

20 kHz
· Lowest ‘Eigenfrequency’ at x=3,6cm 
20 Hz

· The latter two defining an value of α 
3.8/cm

· Ratio δ of friction 
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Because the coefficients of the DE system are no longer constant you can try out solutions of the form:
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They lead to the socalled WKB approximation, which gives some good hint on the dependency of wave length and phase velocity on frequency and place x. But they have the big disadvantage that the approximation fails heavily for each frequency near to its stopper xstop.
So what we can do is to separate off the time dependency by a factor 
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 , so transforming system of linear, partial DEs to an ordinary, linear DE system, while tranforming the Z operator to a simple complex number z:
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After applying 
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 to the first equation we can eliminate 
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 from the first two equations to get 
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We use this to replace 
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 by 
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 in the membrane equation. So we are left with:
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This ordinary, linear, homogenous DE having place and frequency dependent coefficients must be solved numerically. (The special case without friction has a hypergeometric series as an analytical solution, but this does not help us much!)
Our plan is: For given ω calculate 
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, from this we get 
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. Multiply all of them by 
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 , take only the real part, step through t and you can make a nice animated film of the three functions on your computer sreen. Have the program interactively change the frequency and the model parameters and look how the ear model behaves: Its worth the effort.
With some inspiration from the FORTRAN program code published by Ekbert Deboer long ago we have programmed the here described model (in BORLAND PASCAL 7.0, today easily to include into DELPHI) and used it as a basis for the following deliberations and computed experiments.
And here is what is still missing:

Step  5: Introduction of a Small Non-Linearity:

Step 6: The Role of Middle Ear and Outer Ear Canal:

Step 7: The Compressive Non-Linearity of DPOAE Production:
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