Application of Auditory Steady State Response (ASSR) in Diagnosis of Infant Hearing Loss in the Era of Universal Newborn Hearing Screening

James W. Hall III, Ph.D.

Clinical Professor and Chair
Department of Communicative Disorders
College of Health Professions
University of Florida
Gainesville, FL 32610
Jhall@hp.ufl.edu
Year 2000 JCIH Position Statement:
Protocol for Confirmation of Hearing Loss
In Infants and Toddlers (0 to 6 months)

- Child and family history
- Otoacoustic emissions
- ABR during initial evaluation to confirm type, degree & configuration of hearing loss (ASSR now also?)
- Acoustic immittance measures (including acoustic reflexes)
- Behavioral response audiometry (if feasible)
 - Visual reinforcement audiometry or
 - Conditioned play audiometry
 - Speech detection and recognition
- Parental report of auditory & visual behaviors
- Screening of infant’s communication milestones
Auditory Steady State Responses (ASSRs): Selected Literature from the Australian Group

Auditory Steady State Responses (ASSRs): Selected Literature from the Canadian Group

Auditory Steady State Response (ASSR):
Clinical Devices

- GSI VIASYS
 - Audera
 - Descendant of Melbourne Australia system Field
 (Rickards, Gary Rance, Barbara Cone-Wesson, et al)

- Bio-Logic Systems Inc.
 - MASTER
 - Descendent of Canadian system
 (Terry Picton et al)
ASSR: General Principles

- An electrophysiologic response, similar to ABR.
- Instrumentation includes:
 - Insert earphones
 - Surface electrodes
 - Averaging computer
- Stimuli are pure tones (frequency specific, steady state signals) activating cochlea and CNS
- ASSR is generated by rapid modulation of “carrier” pure tone amplitude (AM) or frequency (FM).
- Signal intensity can be as high as 120 dB HL
- ASSR phase or frequency is detected automatically (vs. visual detection)
ASSR:
2000 Hz tone modulated at rate of 100 Hz
ASSR:
Response imbedded within EEG
ASSR (Audera):
Significant phase coherence
Limitation of Tone Burst ABR in Severe-to-Profound Hearing Loss

No ABR > 80 dB HL

No ASSR > 120 dB HL
Estimation of Frequency-Specific Auditory Thresholds with Auditory Electrophysiology: DSL Hearing Aid Fitting
Management of Infant Hearing Loss:
Cochlear Implants
2 year old girl

Previous audiologic assessment
- sound field behavioral audiometry indicated moderate hearing loss (apparently since birth)
- ABR threshold only for 500 Hz tone burst in left ear
- no ear specific hearing thresholds
- Inadequate hearing aid fitting (language delay)

Referred to University of Florida for ASSR under light anesthesia
ASSR Case Report: Estimating Auditory Thresholds (previous inconclusive behavioral and ABR findings)
ASSR Case Report: Estimating Auditory Thresholds
ASSR, ABR, and Pure Tone Audiometry: Asking the clinically relevant question

Not:
Which frequency-specific electrophysiologic technique is best ... tone burst ABR or ASSR?

But:
How does the ASSR technique complement click and tone burst ABR techniques in the infant test battery?
Tone Burst ABR versus Auditory Steady State Response (ASSR): Advantages and Disadvantages

<table>
<thead>
<tr>
<th>Auditory dysfunction</th>
<th>ABR</th>
<th>ASSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal hearing</td>
<td>♦</td>
<td>♦</td>
</tr>
<tr>
<td>Conductive HL</td>
<td>♦</td>
<td>♦</td>
</tr>
<tr>
<td>Sensory HL</td>
<td>♦</td>
<td>♦</td>
</tr>
<tr>
<td>Neural / Auditory</td>
<td>♦</td>
<td>♦</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>♦</td>
<td>♦</td>
</tr>
</tbody>
</table>

- **Normal hearing**:
 - ♦ accurate estimation
 - ♦ may over-estimate thresholds if patient is not sedated

- **Conductive HL**:
 - ♦ ear-specific findings
 - ♦ bone conduction
 - ♦ tone-burst measures but masking required

- **Sensory HL**:
 - ♦ accurate only to moderate HL degree
 - ♦ accurate from moderate to profound HL

- **Neural / Auditory Neuropathy**:
 - ♦ identified with wave I or CM
 - ♦ cannot distinguish profound sensory versus neural HL
Role of ASSR in Frequency-Specific Estimation of Hearing Sensitivity in Infancy

OAE/ABR Screening
Refer Outcome

- Normal?
 - Wave I
 - Wave I-V
 - 20 dB nHL
 - Tone Burst
 - ABR or OAEs

- Click ABR
 - Delayed Wave I?
 - Bone Conduction
 - ABR

- Abnormal ABR or No Response
 - Wave I only?
 - CM only?
 - ASSR

- Auditory Neuropathy